Diferença entre transformação de Laplace e Fourier
Transformações de Laplace vs Fourier
Tanto a transformação de Laplace como a transformada de Fourier são transformações integrais, que são mais comumente empregadas como métodos matemáticos para resolva sistemas físicos modelados matematicamente. O processo é simples. Um modelo matemático complexo é convertido em um modelo mais simples e resolvido usando uma transformada integral. Uma vez que o modelo mais simples é resolvido, a transformada integral inversa é aplicada, o que proporcionaria a solução para o modelo original.
Por exemplo, uma vez que a maioria dos sistemas físicos resulta em equações diferenciais, elas podem ser convertidas em equações algébricas ou em equações diferenciais de fácil determinação facilmente usando uma transformada integral. Então, resolver o problema será mais fácil.
O que é a transformação de Laplace?
Dada uma função f (t) de uma variável real t, a sua transformada Laplace é definida pela integral
(sempre que existir), que é uma função de uma variável complexa s. Normalmente é denotado por L { f (t)}. A transformada inversa de Laplace de uma função F (s) é considerada a função f (t) de tal forma que L f (t)} = F (s), e na notação matemática usual que escrevemos, L -1 { F (s)} = f (t). A transformada inversa pode ser feita única se não forem permitidas funções nulas. Pode-se identificar estes dois como operadores lineares definidos no espaço de função, e também é fácil ver isso, L -1 {L { f (t)}} = f (t), se não forem permitidas funções nulas.A tabela a seguir lista as transformações de Laplace de algumas das funções mais comuns.
O que é a transformada de Fourier?
Dada uma função f (t) de uma variável real t, a sua transformada Laplace é definida pela integral
(sempre que existir), e geralmente é denotado por F { f (t)}. A transformada inversa F -1 { F (α)} é dada pela integral . A transformação de Fourier também é linear e pode ser pensada como um operador definido no espaço de funções.Usando a transformada de Fourier, a função original pode ser escrita da seguinte forma, desde que a função tenha apenas um número finito de descontinuidades e seja absolutamente integrável.
Qual a diferença entre as transformações de Laplace e Fourier?
- A transformação de Fourier de uma função f (t) é definida como , enquanto a transformada de laplace é definida como .
- A transformação de Fourier é definida apenas para funções definidas para todos os números reais, enquanto a transformação de Laplace não requer a definição da função para definir os números reais negativos.
- A transformada de Fourier é um caso especial da transformação de Laplace. Pode-se ver que ambos coincidem por números reais não negativos. (ou seja, s no Laplace seja iα + β onde α e β são reais, tal que e β = 1 / √ (2ᴫ) )
- Cada função que tenha uma transformada de Fourier terá uma transformação de Laplace, mas não vice- versa.